Bihar Board NCERT solutions for class 10 maths surface area and volume Chapter 13 Ex 4
बिहार बोर्ड इंटर/Matric परीक्षा 2022 के सभी विद्यार्थी के सभी विषय की सभी प्रकार के प्रश्न का प्रारूप और PDF वर्ग नोट विषयवार सभी प्रकार के study note ( MCQ , Short question long question ) Bharti Bhawan
NCERT Class 10Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.4
प्रश्न 1.
पानी पीने वाला एक गिलास 14 cm ऊँचाई वाले एक शंकु के छिन्नक के आकार का है। दोनों वृत्ताकार सिरों के व्यास 4 cm और 2 cm हैं। इस गिलास की धारिता ज्ञात कीजिए।
हल
दिया है, शंकु के छिन्नक के व्यास क्रमश: 4 cm व 2 cm हैं।
त्रिज्या (r1) = 2 cm तथा त्रिज्या (r2) = 1 cm
गिलास की ऊँचाई (h) = 14 cm
शंकु के छिन्नक के आकार के गिलास का आयतन
अत: गिलास की धारिता = 10223 cm3
प्रश्न 2.
एक शंकु के छिन्नक की तिर्यक ऊँचाई 4 cm है तथा इसके वृत्तीय सिरों के परिमाप (परिधियाँ) 18 cm और 6 cm हैं। इस छिन्नक का व्रक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
हल
दिया है, शंकु के छिन्नक की तिर्यक ऊँचाई (l) = 4 cm
एक सिरे की वृत्तीय परिधि, 2πr1 = 18 cm ⇒ πr1 = 9 cm
दूसरे सिरे की वृत्तीय परिधि, 2πr2 = 6 cm ⇒ πr2 = 3 cm
छिन्नक का वक्र पृष्ठीय क्षेत्रफल = π(r1 + r2)l
= (πr1 + πr2)l
= (9 + 3) × 4
= 48 cm2
अतः छिन्नक का वक्र पृष्ठीय क्षेत्रफल = 48 cm2
प्रश्न 3.
एक तुर्की टोपी शंकु के छिन्नक के आकार की है (चित्र देखिए)। यदि इसके खुले सिरे की त्रिज्या 10 cm है, ऊपरी सिरे की त्रिज्या 4 cm है और टोपी की तिर्यक ऊँचाई 15 cm है, तो इसके बनाने में प्रयुक्त पदार्थ का क्षेत्रफल ज्ञात कीजिए।
हल
दिया है, टोपी शंकु के छिन्नक के आकार की है जिसकी तिर्यक ऊँचाई (l) = 15 cm,
त्रिज्या (r1) = 10 cm तथा त्रिज्या (r2) = 4 cm
टोपी का वक्रपृष्ठ = π(r1 + r2)l
= 227 (10 + 4) × 15
= 660 cm2
टोपी के बन्द सिरे का क्षेत्रफल =
= × (4)2
= cm2
= 50 cm2
टोपी में लगा कुल कपड़ा = टोपी का वक्रपृष्ठ + बन्द सिरे का क्षेत्रफल
= (660 + 50 )
= 710 cm2
अत: टोपी बनाने में प्रयुक्त पदार्थ का क्षेत्रफल = 710 cm2
प्रश्न 4.
धातु की चादर से बना और ऊपर से खुला एक बर्तन शंकु के एक छिन्नक के आकार का है, जिसकी ऊँचाई 16 cm है तथा निचले और ऊपरी सिरों की त्रिज्याएँ क्रमश 8 cm और 20 cm हैं। ₹ 20 प्रति लीटर की दर से, इस बर्तन को पूरा भर सकने वाले दूध का मूल्य ज्ञात कीजिए। साथ ही, इस बर्तन को बनाने के लिए प्रयुक्त धातु की चादर का मूल्य ₹ 8 प्रति 100 cm2 की दर से ज्ञात कीजिए। (π = 3.14 लीजिए)
हल
दिया है, बर्तन शंकु के छिन्नक के आकार का है जिसकी ऊँचाई (h) =16 cm
और शंकु के ऊपरी सिरे की त्रिज्या (r1) = 20 cm तथा शंकु के निचले सिरे की त्रिज्या (r2) = 8 cm
तब, बर्तन का आयतन = छिन्नक का आयतन
= 3328 × 3.14
= 10449.92 cm3
बर्तन को दूध से भरने के लिए 10449.92 cm3 अथवा 10.450 लीटर दूध चाहिए।
तब, ₹ 20 प्रति लीटर की दर से दूध का मूल्य = 20 × 10.45 = ₹ 209
बर्तन को बनाने में वक्रपृष्ठ एवं आधार पर चादर प्रयुक्त होगी,
तब, बर्तन के आधार का क्षेत्रफल = πr22
= 3.14 × (8)2
= 3.14 × 64
= 200.96 cm3
बर्तन में प्रयुक्त चादर का क्षेत्रफल = (1758.4 + 200.96) cm2 = 1959.36 cm2
अतः ₹ 8 प्रति 100 cm2 की दर से चादर का मूल्य = 8100 × 1959.36
= ₹ 156.7488
= ₹ 156.75
अत: दूध का मूल्य = ₹ 209 तथा चादर का मूल्य = ₹ 156.75
प्रश्न 5.
20 cm ऊँचाई और शीर्ष कोण (vertical angle) 60° वाले एक शंकु को उसकी ऊँचाई के बीचो-बीच से होकर जाते हुए एक तल से दो भागों में काटा गया है, जबकि तल शंकु के आधार के समान्तर है। यदि इस प्राप्त शंकु के छिन्नक को व्यास 116 cm वाले एक तार के रूप में बदल दिया जाता है तो तार की लम्बाई ज्ञात कीजिए।
हल
चित्र में किसी शंकु के आधार का व्यास A’OA है तथा शीर्ष V है।
शंकु का शीर्ष कोण A’VA = 60° है, तब शंकु का अर्द्धशीर्ष कोण (α) = 30°
शंकु की ऊँचाई = 20 cm है।
तब, समकोण ΔOAV में,
Bihar Board NCERT solutions for class 10 Bihar Board NCERT solutions for class 10 Bihar Board NCERT solutions for class 10 Bihar Board NCERT solutions for class 10 Bihar Board NCERT solutions for class 10 Bihar Board NCERT solutions for class 10